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Abstract
The microvasculature and immune cells are major components of the tumor microenvironment (TME). Hypoxia plays a 
pivotal role in the TME through hypoxia-inducible factor 1-alpha (HIF-1α) which upregulates vascular endothelial growth 
factor (VEGF). VEGF, an angiogenesis stimulator, suppresses tumor immunity by inhibiting the maturation of dendritic 
cells, and induces immunosuppressive cells such as regulatory T cells, tumor-associated macrophages, and myeloid-derived 
suppressor cells. HIF-1α directly induces immune checkpoint molecules. VEGF/VEGF receptor (VEGFR)-targeted therapy 
as a cancer treatment has not only anti-angiogenic effects, but also immune-supportive effects. Anti-angiogenic therapy has 
the potential to change the immunological “cold tumors” into the “hot tumors”. Glioblastoma (GB) is a hypervascular tumor 
with high VEGF expression which leads to development of an immuno suppressive TME. Therefore, in the last decade, 
several combination immunotherapies with anti-angiogenic agents have been developed for numerous tumors including 
GBs. In particular, combination therapy with an immune checkpoint inhibitor and VEGF/VEGFR-targeted therapy has been 
suggested as a synergic treatment strategy that may show favorable changes in the TME. In this article, we discuss the cross 
talk among immunosuppressive cells exposed to VEGF in the hypoxic TME of GBs. Current efficient combination strategies 
using VEGF/VEGFR-targeted therapy are reviewed and proposed as novel cancer treatments.

Keywords VEGF · Hypoxia · Regulatory T cell · Tumor-associated macrophage · Myeloid-derived suppressor cell · 
Immune checkpoint molecule · Tumor microenvironment

Introduction

The tumor microenvironment (TME) consists of immune 
cells, fibroblasts, endothelial cells, extracellular matrix, and 
some signaling molecules such as chemokines. The TME 
shows an immunosuppressive effect and plays critical roles 
in tumor growth, angiogenesis, and metastasis [1].

Glioblastomas (GBs) are the most aggressive and vascu-
larized primary brain tumors [2]. Despite multimodal ther-
apy including surgical removal, radiation, and chemother-
apy, GBs are essentially incurable [3, 4]. The heterogeneity, 
infiltrative characteristics, presence of glioma stem cells, and 
function of blood-brain barrier have been appointed as the 
main causes of therapeutic resistance and malignant relapse 
[3, 4]. Furthermore, the lack of anti-tumor immune response 
due to an immunosuppressive TME also contributes to the 
treatment failure. Immune checkpoint molecules, exhaustion 
of cytotoxic T lymphocytes (CTLs), and immunosuppressive 
cells in hypoxic conditions induce the immunosuppressive 
TME. Tumor-associated macrophages (TAMs), regula-
tory T cells (Tregs), and myeloid-derived suppressor cells 
(MDSCs) are major components of the immunosuppressive 
cells in the TME of GBs [5]. Programmed cell death-1 (PD-
1)/programmed cell death ligand-1 (PD-L1) are immune 
checkpoint molecules that are associated with immunosup-
pressive cells in the TME. PD-L1 expressed on tumor cells 
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binds to PD-1 expressed on activated T cells and negatively 
regulates immune responses [6, 7].

Vascular endothelial growth factor (VEGF) is a key 
mediator of tumor angiogenesis and a major target for anti-
angiogenic therapy for various malignant tumors includ-
ing GBs [2, 8, 9]. VEGF is induced by hypoxia through a 
hypoxia-inducible factor 1 alpha (HIF-1α)-depending path-
way, which contributes to immune suppression in the TME 
[10]. Therefore, anti-VEGF (bevacizumab; Bev) or VEGF 
receptor (VEGFR)-targeted (sunitinib, sorafenib) agents as 
a cancer treatment induce not only anti-angiogenic effects, 
but also immune-supportive effects [11–14]. Recently, the 
significance of the PD-1/PD-L1 immune checkpoint system 
has received attention in several types of tumors [6, 7]. Anti-
PD-1 and PD-L1 antibodies exert a potent effect in inhib-
iting tumor growth in melanomas, non-small lung cancer, 
and kidney cancer [15]. However, immunologically “cold” 
tumors including GBs did not have advantages by immune 
checkpoint inhibitors [16]. Anti-angiogenic therapy may 
convert immunologically “cold” tumors to “hot” tumors. 
Therefore, combination usage of an anti-angiogenic agent 
and an immune checkpoint inhibitor may be a strategy to 
overcome the mechanism of resistance of immunotherapies 
for “cold” tumors [17]. Over the last decade, several anti-
angiogenic therapies combined with chemotherapies and 
immunotherapies have been developed for elimination of 
the immunosuppressive TME. For further development of 
these strategies, we need to understand alterations in the 
TME following chemotherapies and immunotherapies with 
or without anti-VEGF/VEGFR therapy.

In this article, we discuss the cross talk among immu-
nosuppressive cells exposed to VEGF in the hypoxic TME 
of GBs. The current efficient combination strategies using 
VEGF/VEGFR-targeted therapy are reviewed. Finally, 
alterations in the TME following these combination strat-
egies are also summarized to understand the mechanisms 
of action and resistance, followed by a proposal for novel 
cancer therapies.

VEGF

VEGF plays an important role in vascular development 
and in diseases involving abnormal growth of blood ves-
sels. Since discovery of its dual roles in endothelial pro-
liferation and vascular permeability [18, 19], VEGF has 
been considered a key mediator of neovascularization in 
tumors (Fig. 1). Elevated VEGF levels are associated with 
poor clinical outcomes in numerous tumors including GBs 
[2, 20]. In addition to angiogenic effects, VEGF suppresses 
the anti-tumor immune response [15]. VEGF inhibits matu-
ration of dendritic cells (DCs), resulting in inactivation 
of CTLs [21]. VEGF also induces an immunosuppressive 
TME by strongly inducing Tregs, TAMs, and MDSCs [22]. 

Furthermore, VEGF enhances the expression of PD-1 on 
CD8+ CTLs and Tregs in a VEGFR2-dependent manner 
(Fig. 1) [23]. Tumor-derived VEGF, interleukin (IL)-10, and 
prostaglandin E3 cooperatively induced Fas ligand expres-
sion in endothelial cells, leading to exhaustion of CTL but 
not Tregs (Fig. 1) [24].

VEGF is induced by hypoxia via activation of the tran-
scription factor, HIF-1, which could play an important role 
in triggering tumor angiogenesis [25, 26]. The TME is 
mainly altered by hypoxia and acidosis [27]. Hypoxia sup-
ports the escape of tumor cells from immune surveillance by 
recruiting TAMs, Tregs, and MDSCs into the TME directly 
or through upregulation of VEGF [28].

TAMs

Macrophages often behave as immunosuppressive cells and 
contribute to inflammatory diseases. Macrophages express 
different functional programs in response to microenviron-
mental signals, defined as M1/M2 polarization [29]. M2 
macrophages produce growth factors and anti-inflammatory 
cytokines to suppress the host immune response, resulting 
in tumor progression [29].

TAMs typically behave as M2 macrophages [30], playing 
a pivotal role in the TME [28, 30]. The interaction between 
the tumor cells and TAMs is promoted via macrophage col-
ony-stimulating factor and its receptor [29]. TAMs induce 
various growth factors such as basic fibroblast growth fac-
tor, epidermal growth factor, hepatocyte growth factor, and 
platelet-derived growth factor [29]. In addition, the lack of 
arginine by arginase I, and IL-10, transforming growth fac-
tor (TGF)-β, and prostaglandin F2 produced by TAMs sup-
press effector T cells [29]. TAMs produce VEGF and matrix 
metalloproteinase 9, which promote angiogenesis, invasion, 
and metastasis [29]. Although the existence of TAMs is still 
controversial as a prognostic biomarker for cancer patients, 
most reports have demonstrated that increased TAMs are 
related to poor prognosis in GBs; breast, esophagus, and 
liver cancers; and malignant lymphoma [31]. Interestingly, 
TAMs infiltration is associated with the resistance to anti-
angiogenic therapy through downregulation of macrophage 
migration inhibitory factor in GBs [32]. VEGF in the 
hypoxic TME is a key factor for transitioning from the M1 
to M2 macrophage phenotype [33]. Furthermore, HIF-1α 
promotes the migration and differentiation of TAMs from 
immature myeloid cells via VEGF exposure [17].

Tregs

Tregs (CD4 + CD25 + Foxp3+) play an active and signifi-
cant role in the progression of tumors, and play an impor-
tant role in suppressing tumor-specific immunity [34, 
35]. Tregs suppress T cell-mediated immune responses 
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via TGF-β, IL-10, and IL-35. Tregs induce the apoptosis 
of effector T cells through granzyme B. Consumption of 
IL-2 by Tregs inhibits effector T cells proliferation. Fur-
thermore, Tregs directly suppress DCs [35]. Increased 
Tregs in tumor tissue or peripheral blood are significantly 
associated with shorter survival in most cancer patients 
including those with GBs [36]. Tregs may be critical for 
evaluation of the clinical significance of immunosuppres-
sive effects after anti-angiogenic therapy. To detect Tregs 
more precisely, effector Tregs are defined as CD45RA-
Foxp3highCD4+ which may reflect an immune suppressive 
function. Non Tregs (CD45RA-Foxp3lowCD4+), which 
produce inflammatory cytokines such as interferon-γ, are 
included in the CD4 + CD25 + Foxp3+ cell population 
[36].

The role of HIF-1α has also been implicated in direct 
regulation of the differentiation of Tregs and in promotion 
of the recruitment of Tregs to the TME via overexpression 
of CC chemokine ligand 22 and 28 [37]. HIF-1α induces 
VEGFR2-expressing Tregs through VEGF production 
[37].

MDSCs

MDSCs are a type of myeloid cells that can differ-
entiate into macrophages, DCs and granulocytes, 
thus suppressing CTLs. In humans, MDSCs are 
CD11b + CD33 + Cd14 + HLA-DR- [38]. CD115, CD124, 
and VEGFR were also identified in MDSCs [39]. MDSCs 
are induced by IL-6, VEGF, and prostaglandin E2, which 
are produced by tumor cells. In addition, MDSCs are 
activated by interferon-γ, IL-4, IL-13, and TGF-β pro-
duced by CTLs and tumor stromal cells [38]. MDSCs 
also produce TGF-β, IL-10, and metalloproteinase 9 [40]. 
Interestingly, recent findings suggest that natural killer T 
cells activated by α-GalCer-loaded CD11b + Gr1 + MDSC 
can acquire the ability to convert immunosuppressive 
MDSCs into immunity-promoting antigen-presenting 
cells. Reprogramed MDSCs show upregulation of expres-
sion of CD11b, CD11c, and CD86, which support immu-
nity by antigen-specific CTLs without increasing Tregs 
[22, 41]. GB patients with a more favorable prognosis 
exhibit decreased MDSCs and increased DCs compared 

Fig. 1  Role of VEGF in the tumor microenvironment. VEGF has 
dual effects of vascular biological and tumor immunological regula-
tion in the tumor microenvironment. VEGF plays a pivotal role in 
inducing vacular endothelial cells and immunosuppressive cells in 
hypoxic conditions. DCs dendritic cells, ECs endothelial cells, IFP 

interstial fluid pressure, MDSCs myeloid-derived suppressor cells, 
PD-1 programmed death-1, PD-L1 programmed death ligand 1, Tregs 
regulatory T cells, TAMs tumor-associated macrophages, TILs tumor-
infiltrating lymphocytes, VEGFR vascular endothelial growth factor 
receptor, VVO vesiculo-vacuolar organelle
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to those with a worse prognosis [42]. Interactions between 
MDSCs and glioma stem cells via migration inhibitory 
factor enhances the function of MDSCs, which could be 
targeted to reduce the growth of GBs [42]. In addition, 
MDSCs directly promotes angiogenesis, which is associ-
ated with refractoriness to anti-angiogenic therapy [43]. 
VEGF is strongly associated with MDSC accumulation in 
GBs [44, 45]. HIF-1α has also been implicated in direct 
regulation of the function and differentiation of MDSCs 
in the hypoxic TME [46].

PD‑1/PD‑L1

PD-1 is expressed on CD8+T cells and Tregs. PD-L1 is 
expressed on tumor cells in numerous malignant tumors 
including GBs and binds to PD-1 to negatively regulate 
the immune response of CD8+T cells [6, 7]. A recent 
study showed that PD-1 is expressed on TAMs and cor-
relates negatively with phagocytic potency, demonstrat-
ing its relevance to tumor immunity [47]. PD-L1 protein 
expression was identified in 61 to 88% of patients with 
GBs [48]. PD-1/PD-L1 expression is associated with poor 
prognosis for patients with GBs [49, 50]. Garber et al. 
demonstrated that GB specimens have a higher frequency 
of PD-1+ tumor-infiltrating lymphocytes (TILs) compared 
with lower-grade gliomas, whereas PD-L1 expression 
does not significantly differ among malignant grades [51]. 
Isocitrate dehydrogenase (IDH)-wild-typed GBs are more 
“immunologically active” than IDH-mutated GBs. GBs 
with wild-type IDH display a higher number of TILs and 
elevated expression of PD-L1 compared with IDH-mutant 
GBs. Therefore, IDH-wild-type GBs may be more readily 
targeted by PD-1/PD-L1 checkpoint blockade [52]. In par-
ticular, PD-L1 is strongly expressed in the mesenchymal 
subgroup of GBs [53].

A previous study demonstrated that PD-1 expression on 
CD8+T cells and Tregs is induced by VEGF [23]. Similarly, 
PD-L1 is upregulated via VEGF exposure in some types of 
tumors including GBs [53]. Immunologically “cold” tumors 
including GBs are not good targets for immune checkpoint 
inhibitors [16]. Anti-angiogenic therapy has the possibility 
to change “cold” tumors into “hot” tumors with a favorable 
microenvironment. Therefore, combination therapy with an 
immune checkpoint inhibitor and VEGF-targeted therapy 
is expected to be an efficient treatment strategy [17]. In 
addition, hypoxia directly causes upregulation of PD-L1 
and CTLA-4 on MDSCs, TAMs, DCs, and tumor cells 
through HIF-1α [54]. HIF-2α is also associated with PD-L1 
expression on tumor cells in metastatic renal cell carcinoma 
[55]. Blocking HIF-1α by agonizing nitric oxide signaling 
decreased PD-L1 expression and promotes CTL-mediated 
lysis [56].

Cross talk in the TME

VEGF promotes the accumulation of TAMs, Tregs, and 
MDSCs in tumor tissue and secondary lymphoid organs 
[10]. In addition, HIF-1α activation is also a major com-
ponent of the hypoxic TME. HIF-1α upregulation directly 
drives recruitment of immature myeloid cells and Tregs, and 
fosters their phenotypic conversion into highly suppressive 
MDSCs and TAMs [58]. Recent studies demonstrated func-
tional cross talk among TAMs, Tregs, and MDSCs that was 
strongly associated with hypoxia-induced VEGF produc-
tion [43, 57, 59]. Tregs modify the phenotype of TAMs to 
express inhibitory B7-H molecules. Tregs depletion signifi-
cantly downregulates the expression of immune suppressive 
molecules such as B7-H1 on MDSCs and TAMs, and also 
reduces tumor growth. In addition, Tregs produce IL-10, 
IL-4, and IL-13, and induce monocyte differentiation toward 
TAMs [43, 57, 59]. MDSCs are reported to differentiate into 
TAMs in the hypoxic microenvironment, which is regulated 
by STAT3 activity [60]. Since these immunosuppressive 
cells and immune checkpoint molecules show cross talk in 
the hypoxic TME, anti-VEGF/VEGFR therapy can induce 
tumor oxygenation [61], resulting in an immune-supportive 
TME.

Alteration in the TME following chemotherapy 
with or without anti‑VEGF/VEGFR therapy

Alteration of immunosuppressive cells and immune check-
point molecules has been investigated utilizing clinical 
samples before and after chemotherapy [36, 49, 62–103], 
but results have been inconsistent (Tables 1 and 2) [36, 49, 
62–103]. Metronomic cyclophosphamide decreases Tregs 
[62, 66–68, 83], and gemcitabine decreases both Tregs and 
MDSCs [35, 65, 103]. Tregs and MDSCs are not increased 
when chemotherapeutic agents are co-administered with 
immunomodulatory agents such as vaccination and IL-2 
(Table 1) [49, 63, 75, 78]. However, most chemotherapeu-
tic agents including temozolomide tend to increase Tregs 
and MDSCs [71, 72, 74, 79, 84]. In addition, chemotherapy 
also enhances PD-1/PD-L1 via TGF-β induced epithelial-
mesenchymal transition [69].

In contrast, combinational chemotherapy with VEGF/
VEGFR-targeted agents could make the TME immune sup-
portive [23, 96]. VEGF/VEGFR-targeted therapy such as 
Bev, sorafenib, and sunitinib reduces the population of Tregs 
in the peripheral blood and tumor tissue in GBs, metastatic 
colorectal cancer, hepatocellular carcinoma, and renal cell 
carcinoma (Table 2) [86–103]. However, some studies using 
paired peripheral blood before and after VEGFR-targeted 
therapy demonstrated that Tregs and PD-1 were significantly 
increased [104]. The effect of anti-angiogenic therapy has 
been highly controversial regarding MDSCs [91, 105]. 
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Serum VEGF-A levels are correlated with the population 
of MDSCs, and Bev may decrease MDSCs [90, 94, 95]. 
Sunitinib and sorafenib may also decrease the population of 
MDSCs and recover the Th1 reaction in the patients of hepa-
tocellular carcinoma and metastatic kidney cancer [93, 105]. 
However, the population of MDSCs does not change follow-
ing Bev and axitinib, despite decreasing in serum VEGF of 
patients with kidney cancer [106]. The status of MDSCs 
following anti-VEGF/VEGFR therapy is inconsistent [88, 
90, 93–95, 97, 98, 104].

Furthermore, in the recurrent stage after anti-angiogenic 
therapy, the status of immunosuppressive cells and immune 
checkpoint molecules is also highly controversial (Table 2). 
VEGF-targeted therapy can lead to either tumor oxygenation 
or tumor hypoxia [14, 61, 107]. Therefore, both an immune-
supportive TME in normoxic conditions and a hypoxia-
induced immunosuppressive TME have been reported after 
VEGF-targeted therapy [14, 61, 107]. Tregs in the periph-
eral blood are increased in patients with recurrent GBs after 
development of resistance to VEGFR inhibitors [89]. An 
increased level of PD-1 expression on CD4 and CD8 T cells 
was reported in patients with GBs or metastatic renal cell 
carcinoma that is refractory to VEGFR-targeted therapy 
[89, 109]. Previous studies have demonstrated changes in 
the TME using tumor specimens resected under and after 
Bev therapy. Bev downregulates the expression of PD-1 
and PD-L1 immune checkpoint molecules, suppresses the 
infiltration of TAMs and Tregs, and increases CTL infil-
tration. Importantly, the conditions are sustained during 
long-term Bev usage [14]. VEGF persistently contributes 
to tumor growth, even if secondary signaling pathways are 
upregulated. These findings support the concepts of continu-
ous usage as Bev beyond progression [110]. The reason for 
the discrepancy in the status of immunosuppressive cells 
and molecules at the recurrent stage among relevant studies 
remains unclear. The reason may be the difference between 
peripheral blood and tumors, the difference in the target of 
inhibition, or the response rate of targeted therapies. Tregs, 
PD-L1, and TAMs are upregulated in patients showing par-
tial response [101]. Tada et al. suggested that analyses of 
TILs and immune cells using tumor specimens are more 
important than analyses of peripheral blood for investiga-
tion of cancer immunology [36]. Further investigation using 
tumor samples as well as peripheral blood may be required 
for monitoring immunosuppressive cells and molecules and 
seeking for predictable and prognostic biomarkers.

Future direction

VEGF plays a key role in the development of the immu-
nosuppressive TME by inhibition of DC maturation and 
enhancement of immunosuppressive cells and molecules 
[21, 23]. Immunologically “cold” tumors are unrespon-
sive to immunotherapies including immune checkpoint 
inhibitors. Anti-angiogenic therapy may change the TME 
into an immunological favorable “hot” microenvironment. 
Bev suppresses immunosuppressive cells including TAMs, 
Tregs, and MDSCs, and improves the migratory capacity 
of CTLs [14]. Theoretically, Bev could enhance the effect 
of PD-1/PD-L1 inhibitors (Fig. 2). Therefore, many basic 
research studies have demonstrated that combination ther-
apy of VEGF/VEGFR inhibitors and PD-1/PD-L1 inhibi-
tors induces a synergistic effect on several types of tumors 
including GBs, melanoma, lung cancer, and hepatocellular 
carcinoma [92, 96, 111]. Patients with metastatic renal 
cell carcinoma show improvement in antigen-specific 
T cell migration after combination usage of anti-VEGF 
and anti-PD-L1 antibodies [111]. Currently, clinical tri-
als testing theses combination therapies are being con-
ducted for several types of tumors such as recurrent GBs, 
renal cell carcinoma, colorectal cancer, and ovarian can-
cer (NCT03024437, NCT02659384, NCT02873962, 
NCT02017717) [16]. This treatment strategy may lead to 
promising results for those malignant refractory tumors. 
However, high dose and long-term usage of anti-VEGF/
VEGFR therapy is associated with hypoxia which is one 
mechanism of resistance to this combination therapy [108]. 
Further investigations are warranted to determine the ade-
quate dosage and duration of anti-angiogenic agents for 
the combination usage with immune checkpoint inhibitors. 
Because immune checkpoint inhibitors and anti-VEGF/
VEGFR treatment are immunological “break off” strate-
gies, other immunotherapies such as DCs-based immuno-
therapy [112], tumor vaccine therapy [113], and chimeric 
antigen receptor T-cell therapy [114] should be added to 
them as “acceleration on” strategies to improve therapeutic 
efficacy. Furthermore, hypoxia-targeted therapy is another 
treatment strategy to overcome the mechanisms of resist-
ance to immunotherapy, via suppressing Tregs, TAMs, and 
MDSCs [115].

As described above, reprogramming the TME to an 
immune-supportive microenvironment improves cancer 
immunotherapy [36, 49, 62–103]. To conquer therapeutic 
refractoriness to immunotherapy, the cross talk of immuno-
suppressive cells and molecules in the TME must be com-
prehensively regulated.
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