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Abstract

The microvasculature and immune cells are major components of the tumor microenvironment (TME). Hypoxia plays a
pivotal role in the TME through hypoxia-inducible factor 1-alpha (HIF-1a) which upregulates vascular endothelial growth
factor (VEGF). VEGF, an angiogenesis stimulator, suppresses tumor immunity by inhibiting the maturation of dendritic
cells, and induces immunosuppressive cells such as regulatory T cells, tumor-associated macrophages, and myeloid-derived
suppressor cells. HIF-1a directly induces immune checkpoint molecules. VEGF/VEGF receptor (VEGFR)-targeted therapy
as a cancer treatment has not only anti-angiogenic effects, but also immune-supportive effects. Anti-angiogenic therapy has
the potential to change the immunological “cold tumors” into the “hot tumors”. Glioblastoma (GB) is a hypervascular tumor
with high VEGF expression which leads to development of an immuno suppressive TME. Therefore, in the last decade,
several combination immunotherapies with anti-angiogenic agents have been developed for numerous tumors including
GBs. In particular, combination therapy with an immune checkpoint inhibitor and VEGF/VEGFR-targeted therapy has been
suggested as a synergic treatment strategy that may show favorable changes in the TME. In this article, we discuss the cross
talk among immunosuppressive cells exposed to VEGF in the hypoxic TME of GBs. Current efficient combination strategies
using VEGF/VEGFR-targeted therapy are reviewed and proposed as novel cancer treatments.

Keywords VEGF - Hypoxia - Regulatory T cell - Tumor-associated macrophage - Myeloid-derived suppressor cell -
Immune checkpoint molecule - Tumor microenvironment

Introduction

The tumor microenvironment (TME) consists of immune
cells, fibroblasts, endothelial cells, extracellular matrix, and
some signaling molecules such as chemokines. The TME
shows an immunosuppressive effect and plays critical roles
in tumor growth, angiogenesis, and metastasis [1].
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Glioblastomas (GBs) are the most aggressive and vascu-
larized primary brain tumors [2]. Despite multimodal ther-
apy including surgical removal, radiation, and chemother-
apy, GBs are essentially incurable [3, 4]. The heterogeneity,
infiltrative characteristics, presence of glioma stem cells, and
function of blood-brain barrier have been appointed as the
main causes of therapeutic resistance and malignant relapse
[3, 4]. Furthermore, the lack of anti-tumor immune response
due to an immunosuppressive TME also contributes to the
treatment failure. Immune checkpoint molecules, exhaustion
of cytotoxic T lymphocytes (CTLs), and immunosuppressive
cells in hypoxic conditions induce the immunosuppressive
TME. Tumor-associated macrophages (TAMs), regula-
tory T cells (Tregs), and myeloid-derived suppressor cells
(MDSCs) are major components of the immunosuppressive
cells in the TME of GBs [5]. Programmed cell death-1 (PD-
1)/programmed cell death ligand-1 (PD-L1) are immune
checkpoint molecules that are associated with immunosup-
pressive cells in the TME. PD-L1 expressed on tumor cells
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binds to PD-1 expressed on activated T cells and negatively
regulates immune responses [6, 7].

Vascular endothelial growth factor (VEGF) is a key
mediator of tumor angiogenesis and a major target for anti-
angiogenic therapy for various malignant tumors includ-
ing GBs [2, 8, 9]. VEGF is induced by hypoxia through a
hypoxia-inducible factor 1 alpha (HIF-1a)-depending path-
way, which contributes to immune suppression in the TME
[10]. Therefore, anti-VEGF (bevacizumab; Bev) or VEGF
receptor (VEGFR)-targeted (sunitinib, sorafenib) agents as
a cancer treatment induce not only anti-angiogenic effects,
but also immune-supportive effects [11-14]. Recently, the
significance of the PD-1/PD-L1 immune checkpoint system
has received attention in several types of tumors [6, 7]. Anti-
PD-1 and PD-L1 antibodies exert a potent effect in inhib-
iting tumor growth in melanomas, non-small lung cancer,
and kidney cancer [15]. However, immunologically “cold”
tumors including GBs did not have advantages by immune
checkpoint inhibitors [16]. Anti-angiogenic therapy may
convert immunologically “cold” tumors to “hot” tumors.
Therefore, combination usage of an anti-angiogenic agent
and an immune checkpoint inhibitor may be a strategy to
overcome the mechanism of resistance of immunotherapies
for “cold” tumors [17]. Over the last decade, several anti-
angiogenic therapies combined with chemotherapies and
immunotherapies have been developed for elimination of
the immunosuppressive TME. For further development of
these strategies, we need to understand alterations in the
TME following chemotherapies and immunotherapies with
or without anti-VEGF/VEGEFR therapy.

In this article, we discuss the cross talk among immu-
nosuppressive cells exposed to VEGF in the hypoxic TME
of GBs. The current efficient combination strategies using
VEGF/VEGFR-targeted therapy are reviewed. Finally,
alterations in the TME following these combination strat-
egies are also summarized to understand the mechanisms
of action and resistance, followed by a proposal for novel
cancer therapies.

VEGF

VEGF plays an important role in vascular development
and in diseases involving abnormal growth of blood ves-
sels. Since discovery of its dual roles in endothelial pro-
liferation and vascular permeability [18, 19], VEGF has
been considered a key mediator of neovascularization in
tumors (Fig. 1). Elevated VEGF levels are associated with
poor clinical outcomes in numerous tumors including GBs
[2, 20]. In addition to angiogenic effects, VEGF suppresses
the anti-tumor immune response [15]. VEGF inhibits matu-
ration of dendritic cells (DCs), resulting in inactivation
of CTLs [21]. VEGEF also induces an immunosuppressive
TME by strongly inducing Tregs, TAMs, and MDSCs [22].
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Furthermore, VEGF enhances the expression of PD-1 on
CD8+ CTLs and Tregs in a VEGFR2-dependent manner
(Fig. 1) [23]. Tumor-derived VEGF, interleukin (IL)-10, and
prostaglandin E3 cooperatively induced Fas ligand expres-
sion in endothelial cells, leading to exhaustion of CTL but
not Tregs (Fig. 1) [24].

VEGF is induced by hypoxia via activation of the tran-
scription factor, HIF-1, which could play an important role
in triggering tumor angiogenesis [25, 26]. The TME is
mainly altered by hypoxia and acidosis [27]. Hypoxia sup-
ports the escape of tumor cells from immune surveillance by
recruiting TAMs, Tregs, and MDSCs into the TME directly
or through upregulation of VEGF [28].

TAMs

Macrophages often behave as immunosuppressive cells and
contribute to inflammatory diseases. Macrophages express
different functional programs in response to microenviron-
mental signals, defined as M1/M2 polarization [29]. M2
macrophages produce growth factors and anti-inflammatory
cytokines to suppress the host immune response, resulting
in tumor progression [29].

TAMs typically behave as M2 macrophages [30], playing
a pivotal role in the TME [28, 30]. The interaction between
the tumor cells and TAMs is promoted via macrophage col-
ony-stimulating factor and its receptor [29]. TAMs induce
various growth factors such as basic fibroblast growth fac-
tor, epidermal growth factor, hepatocyte growth factor, and
platelet-derived growth factor [29]. In addition, the lack of
arginine by arginase I, and IL-10, transforming growth fac-
tor (TGF)-f, and prostaglandin F2 produced by TAMs sup-
press effector T cells [29]. TAMs produce VEGF and matrix
metalloproteinase 9, which promote angiogenesis, invasion,
and metastasis [29]. Although the existence of TAMs is still
controversial as a prognostic biomarker for cancer patients,
most reports have demonstrated that increased TAMs are
related to poor prognosis in GBs; breast, esophagus, and
liver cancers; and malignant lymphoma [31]. Interestingly,
TAMs infiltration is associated with the resistance to anti-
angiogenic therapy through downregulation of macrophage
migration inhibitory factor in GBs [32]. VEGF in the
hypoxic TME is a key factor for transitioning from the M1
to M2 macrophage phenotype [33]. Furthermore, HIF-1a
promotes the migration and differentiation of TAMs from
immature myeloid cells via VEGF exposure [17].

Tregs

Tregs (CD4 + CD25 + Foxp3+) play an active and signifi-
cant role in the progression of tumors, and play an impor-
tant role in suppressing tumor-specific immunity [34,
35]. Tregs suppress T cell-mediated immune responses
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Fig.1 Role of VEGF in the tumor microenvironment. VEGF has
dual effects of vascular biological and tumor immunological regula-
tion in the tumor microenvironment. VEGF plays a pivotal role in
inducing vacular endothelial cells and immunosuppressive cells in
hypoxic conditions. DCs dendritic cells, ECs endothelial cells, /IFP

via TGF-f, IL-10, and IL-35. Tregs induce the apoptosis
of effector T cells through granzyme B. Consumption of
IL-2 by Tregs inhibits effector T cells proliferation. Fur-
thermore, Tregs directly suppress DCs [35]. Increased
Tregs in tumor tissue or peripheral blood are significantly
associated with shorter survival in most cancer patients
including those with GBs [36]. Tregs may be critical for
evaluation of the clinical significance of immunosuppres-
sive effects after anti-angiogenic therapy. To detect Tregs
more precisely, effector Tregs are defined as CD45RA-
Foxp3"&"CD4+ which may reflect an immune suppressive
function. Non Tregs (CD45RA-Foxp3!°"CD4+), which
produce inflammatory cytokines such as interferon-y, are
included in the CD4 + CD25 + Foxp3+ cell population
[36].

The role of HIF-1a has also been implicated in direct
regulation of the differentiation of Tregs and in promotion
of the recruitment of Tregs to the TME via overexpression
of CC chemokine ligand 22 and 28 [37]. HIF-1a induces
VEGFR2-expressing Tregs through VEGF production
[37].

interstial fluid pressure, MDSCs myeloid-derived suppressor cells,
PD-1 programmed death-1, PD-L] programmed death ligand 1, Tregs
regulatory T cells, TAMs tumor-associated macrophages, T/Ls tumor-
infiltrating lymphocytes, VEGFR vascular endothelial growth factor
receptor, VVO vesiculo-vacuolar organelle

MDSCs

MDSCs are a type of myeloid cells that can differ-
entiate into macrophages, DCs and granulocytes,
thus suppressing CTLs. In humans, MDSCs are
CD11b+CD33+Cd14 + HLA-DR- [38]. CD115, CD124,
and VEGFR were also identified in MDSCs [39]. MDSCs
are induced by IL-6, VEGEF, and prostaglandin E2, which
are produced by tumor cells. In addition, MDSCs are
activated by interferon-y, IL-4, IL-13, and TGF-p pro-
duced by CTLs and tumor stromal cells [38]. MDSCs
also produce TGF-, IL-10, and metalloproteinase 9 [40].
Interestingly, recent findings suggest that natural killer T
cells activated by a-GalCer-loaded CD11b+ Gr1 + MDSC
can acquire the ability to convert immunosuppressive
MDSCs into immunity-promoting antigen-presenting
cells. Reprogramed MDSCs show upregulation of expres-
sion of CD11b, CD11c, and CD86, which support immu-
nity by antigen-specific CTLs without increasing Tregs
[22, 41]. GB patients with a more favorable prognosis
exhibit decreased MDSCs and increased DCs compared
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to those with a worse prognosis [42]. Interactions between
MDSCs and glioma stem cells via migration inhibitory
factor enhances the function of MDSCs, which could be
targeted to reduce the growth of GBs [42]. In addition,
MDSC:s directly promotes angiogenesis, which is associ-
ated with refractoriness to anti-angiogenic therapy [43].
VEGF is strongly associated with MDSC accumulation in
GBs [44, 45]. HIF-1a has also been implicated in direct
regulation of the function and differentiation of MDSCs
in the hypoxic TME [46].

PD-1/PD-L1

PD-1 is expressed on CD8+T cells and Tregs. PD-L1 is
expressed on tumor cells in numerous malignant tumors
including GBs and binds to PD-1 to negatively regulate
the immune response of CD8+T cells [6, 7]. A recent
study showed that PD-1 is expressed on TAMs and cor-
relates negatively with phagocytic potency, demonstrat-
ing its relevance to tumor immunity [47]. PD-L1 protein
expression was identified in 61 to 88% of patients with
GBs [48]. PD-1/PD-L1 expression is associated with poor
prognosis for patients with GBs [49, 50]. Garber et al.
demonstrated that GB specimens have a higher frequency
of PD-1+ tumor-infiltrating lymphocytes (TILs) compared
with lower-grade gliomas, whereas PD-L1 expression
does not significantly differ among malignant grades [51].
Isocitrate dehydrogenase (IDH)-wild-typed GBs are more
“immunologically active” than IDH-mutated GBs. GBs
with wild-type IDH display a higher number of TILs and
elevated expression of PD-L1 compared with IDH-mutant
GBs. Therefore, IDH-wild-type GBs may be more readily
targeted by PD-1/PD-L1 checkpoint blockade [52]. In par-
ticular, PD-L1 is strongly expressed in the mesenchymal
subgroup of GBs [53].

A previous study demonstrated that PD-1 expression on
CDS8+T cells and Tregs is induced by VEGF [23]. Similarly,
PD-L1 is upregulated via VEGF exposure in some types of
tumors including GBs [53]. Immunologically “cold” tumors
including GBs are not good targets for immune checkpoint
inhibitors [16]. Anti-angiogenic therapy has the possibility
to change “cold” tumors into “hot” tumors with a favorable
microenvironment. Therefore, combination therapy with an
immune checkpoint inhibitor and VEGF-targeted therapy
is expected to be an efficient treatment strategy [17]. In
addition, hypoxia directly causes upregulation of PD-L1
and CTLA-4 on MDSCs, TAMs, DCs, and tumor cells
through HIF-1a [54]. HIF-2a is also associated with PD-L1
expression on tumor cells in metastatic renal cell carcinoma
[55]. Blocking HIF-1a by agonizing nitric oxide signaling
decreased PD-L1 expression and promotes CTL-mediated
lysis [56].
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Cross talk in the TME

VEGEF promotes the accumulation of TAMs, Tregs, and
MDSCs in tumor tissue and secondary lymphoid organs
[10]. In addition, HIF-1a activation is also a major com-
ponent of the hypoxic TME. HIF-1a upregulation directly
drives recruitment of immature myeloid cells and Tregs, and
fosters their phenotypic conversion into highly suppressive
MDSCs and TAMs [58]. Recent studies demonstrated func-
tional cross talk among TAMs, Tregs, and MDSCs that was
strongly associated with hypoxia-induced VEGF produc-
tion [43, 57, 59]. Tregs modify the phenotype of TAMs to
express inhibitory B7-H molecules. Tregs depletion signifi-
cantly downregulates the expression of immune suppressive
molecules such as B7-H1 on MDSCs and TAMs, and also
reduces tumor growth. In addition, Tregs produce IL-10,
IL-4, and IL-13, and induce monocyte differentiation toward
TAMs [43, 57, 59]. MDSC:s are reported to differentiate into
TAMs in the hypoxic microenvironment, which is regulated
by STAT3 activity [60]. Since these immunosuppressive
cells and immune checkpoint molecules show cross talk in
the hypoxic TME, anti-VEGF/VEGFR therapy can induce
tumor oxygenation [61], resulting in an immune-supportive
TME.

Alteration in the TME following chemotherapy
with or without anti-VEGF/VEGFR therapy

Alteration of immunosuppressive cells and immune check-
point molecules has been investigated utilizing clinical
samples before and after chemotherapy [36, 49, 62—-103],
but results have been inconsistent (Tables 1 and 2) [36, 49,
62-103]. Metronomic cyclophosphamide decreases Tregs
[62, 66—68, 83], and gemcitabine decreases both Tregs and
MDSCs [35, 65, 103]. Tregs and MDSCs are not increased
when chemotherapeutic agents are co-administered with
immunomodulatory agents such as vaccination and IL-2
(Table 1) [49, 63, 75, 78]. However, most chemotherapeu-
tic agents including temozolomide tend to increase Tregs
and MDSCs [71, 72, 74, 79, 84]. In addition, chemotherapy
also enhances PD-1/PD-L1 via TGF-f induced epithelial-
mesenchymal transition [69].

In contrast, combinational chemotherapy with VEGF/
VEGFR-targeted agents could make the TME immune sup-
portive [23, 96]. VEGF/VEGFR-targeted therapy such as
Beyv, sorafenib, and sunitinib reduces the population of Tregs
in the peripheral blood and tumor tissue in GBs, metastatic
colorectal cancer, hepatocellular carcinoma, and renal cell
carcinoma (Table 2) [86—103]. However, some studies using
paired peripheral blood before and after VEGFR-targeted
therapy demonstrated that Tregs and PD-1 were significantly
increased [104]. The effect of anti-angiogenic therapy has
been highly controversial regarding MDSCs [91, 105].
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Serum VEGF-A levels are correlated with the population
of MDSCs, and Bev may decrease MDSCs [90, 94, 95].
Sunitinib and sorafenib may also decrease the population of
MDSCs and recover the Thl reaction in the patients of hepa-
tocellular carcinoma and metastatic kidney cancer [93, 105].
However, the population of MDSCs does not change follow-
ing Bev and axitinib, despite decreasing in serum VEGF of
patients with kidney cancer [106]. The status of MDSCs
following anti-VEGF/VEGEFR therapy is inconsistent [88,
90, 93-95, 97, 98, 104].

Furthermore, in the recurrent stage after anti-angiogenic
therapy, the status of immunosuppressive cells and immune
checkpoint molecules is also highly controversial (Table 2).
VEGF-targeted therapy can lead to either tumor oxygenation
or tumor hypoxia [14, 61, 107]. Therefore, both an immune-
supportive TME in normoxic conditions and a hypoxia-
induced immunosuppressive TME have been reported after
VEGF-targeted therapy [14, 61, 107]. Tregs in the periph-
eral blood are increased in patients with recurrent GBs after
development of resistance to VEGFR inhibitors [§9]. An
increased level of PD-1 expression on CD4 and CDS8 T cells
was reported in patients with GBs or metastatic renal cell
carcinoma that is refractory to VEGFR-targeted therapy
[89, 109]. Previous studies have demonstrated changes in
the TME using tumor specimens resected under and after
Bev therapy. Bev downregulates the expression of PD-1
and PD-L1 immune checkpoint molecules, suppresses the
infiltration of TAMs and Tregs, and increases CTL infil-
tration. Importantly, the conditions are sustained during
long-term Bev usage [14]. VEGF persistently contributes
to tumor growth, even if secondary signaling pathways are
upregulated. These findings support the concepts of continu-
ous usage as Bev beyond progression [110]. The reason for
the discrepancy in the status of immunosuppressive cells
and molecules at the recurrent stage among relevant studies
remains unclear. The reason may be the difference between
peripheral blood and tumors, the difference in the target of
inhibition, or the response rate of targeted therapies. Tregs,
PD-L1, and TAMs are upregulated in patients showing par-
tial response [101]. Tada et al. suggested that analyses of
TILs and immune cells using tumor specimens are more
important than analyses of peripheral blood for investiga-
tion of cancer immunology [36]. Further investigation using
tumor samples as well as peripheral blood may be required
for monitoring immunosuppressive cells and molecules and
seeking for predictable and prognostic biomarkers.

@ Springer

Future direction

VEGEF plays a key role in the development of the immu-
nosuppressive TME by inhibition of DC maturation and
enhancement of immunosuppressive cells and molecules
[21, 23]. Immunologically “cold” tumors are unrespon-
sive to immunotherapies including immune checkpoint
inhibitors. Anti-angiogenic therapy may change the TME
into an immunological favorable “hot” microenvironment.
Bev suppresses immunosuppressive cells including TAMs,
Tregs, and MDSCs, and improves the migratory capacity
of CTLs [14]. Theoretically, Bev could enhance the effect
of PD-1/PD-L1 inhibitors (Fig. 2). Therefore, many basic
research studies have demonstrated that combination ther-
apy of VEGF/VEGFR inhibitors and PD-1/PD-L1 inhibi-
tors induces a synergistic effect on several types of tumors
including GBs, melanoma, lung cancer, and hepatocellular
carcinoma [92, 96, 111]. Patients with metastatic renal
cell carcinoma show improvement in antigen-specific
T cell migration after combination usage of anti-VEGF
and anti-PD-L1 antibodies [111]. Currently, clinical tri-
als testing theses combination therapies are being con-
ducted for several types of tumors such as recurrent GBs,
renal cell carcinoma, colorectal cancer, and ovarian can-
cer (NCT03024437, NCT02659384, NCT02873962,
NCTO02017717) [16]. This treatment strategy may lead to
promising results for those malignant refractory tumors.
However, high dose and long-term usage of anti-VEGF/
VEGEFR therapy is associated with hypoxia which is one
mechanism of resistance to this combination therapy [108].
Further investigations are warranted to determine the ade-
quate dosage and duration of anti-angiogenic agents for
the combination usage with immune checkpoint inhibitors.
Because immune checkpoint inhibitors and anti-VEGF/
VEGEFR treatment are immunological “break off” strate-
gies, other immunotherapies such as DCs-based immuno-
therapy [112], tumor vaccine therapy [113], and chimeric
antigen receptor T-cell therapy [114] should be added to
them as “acceleration on” strategies to improve therapeutic
efficacy. Furthermore, hypoxia-targeted therapy is another
treatment strategy to overcome the mechanisms of resist-
ance to immunotherapy, via suppressing Tregs, TAMs, and
MDSCs [115].

As described above, reprogramming the TME to an
immune-supportive microenvironment improves cancer
immunotherapy [36, 49, 62—103]. To conquer therapeutic
refractoriness to immunotherapy, the cross talk of immuno-
suppressive cells and molecules in the TME must be com-
prehensively regulated.
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